{\left( C \right)^\prime } = 0
{\left( {{x^\mu }} \right)^\prime } = \mu {x^{\mu - 1}},{\left( x \right)^\prime } = 1,{\left( {\sqrt x } \right)^\prime } = {1 \over {2\sqrt x }},{\left( {{1 \over x}} \right)^\prime } = - {1 \over {{x^2}}}
{\left( {\sin x} \right)^\prime } = \cos x,{\left( {\cos x} \right)^\prime } = - \sin x
{\left( {\tan x} \right)^\prime } = {1 \over {{{\cos }^2}x}},{\left( {\cot x} \right)^\prime } 松茸怎么吃= - {1 \over {{{\sin }^2}x}}
{\left( {{a^x}} \right)^\prime } = {a^x}\ln a,{\left( {{e^x}} \right)^\prime } = {e^x}
{\left( {{{\log }_a}x} \right)^\prime } = {1 \over {x\ln a}},{\left( {\ln x} \right)^\prime } = {1 \over x}
\eqalign{ & {\left( {\arcsin x} \right)^\prime } = {1 \over {\sqrt {1 - {x^2}} }},{\left( {\arccos x} \right)^\prime } = - {1 \over {\sqrt {1 - {x^2}} }} \cr & {\left( {\arctan x} \right)^\prime } = {1 \over {1 + {x^2}}},{\left( {{\mathop{\rm arccot}\nolimits} x} \right)^\prime } = - {1 \over {1 + {x^2}}} \cr & {\left( {{\mathop{\rm arcsec}\nolimit人力资源与s} x} \right)^刷百度下拉框\prime } = {1 \over {x\sqrt {{x^2} - 1} }},{\left( {{\mathop{\rm arccsc}\nolimits} x} \right)^\prime } = - {维伦纽夫1 \over {x\sqrt {{x^2认筹} - 1} }} \cr}
二.一些重要的高阶导数公式{\left( {{x^\mu }} \right)^{\left( n \right)}} = \mu \left( {\mu - 1} \ri安徽中医药高等专科学校ght) \cdots \left( {斯隆管理学院\mu - n + 1} \right){x^{\mu - n}},{\left( 超级搞笑图片{{x^n}} \right)^{\left( n \right)}} = n!,{\left( {{x^n}} \right)^{\left( m \right)}} = 0\left( {m > n} \right)
{\left( {{a^x}} \right)^{\left( n \right)}} = {a^x}{\left( {\ln a} \right)^n},{\left( {{e^x}} \right)^{\left( n \right)}} = {e^x}
{\left( {\sin x} \right)^{\left( n \right)}} = \sin \left( {x + n \cdot {\pi \over 2}} \right),{\left( {\cos x} \right)^{\left( n \right)}} = \cos \left( {x + n \cdot {\pi \over 2}} \right)
{\left[ {\sin \left( {ax + b} \right)} \right]^{\left( n \right)}} = {a^n}\sin \left( {ax + b + n \cdot {\pi \over 2}} \right),{\left[ {\cos \left( {ax + b} \right)} \right]^{\left( n \right)}} = {a^n}\cos \left( {ax + b + n \cdot {\pi \ove调制解调器固件r 2}} \right)
{\left( {{1 \over {ax + b}}} \right)^{\left( n \right)}} = {\left( { - 1} \right)^n}{{{a^n}n!} \over {{{\left( {ax + b} \right)}^{n + 1}}}}
{\left[ {\ln \left( {1 + x} \right)} \亚太影展right]^{\left( n \right)}} = {\left( {{1 \over {1 + x}}} \right)^{\left( {n西游记歌曲 - 1} \right)}}
三.某点处的导数1,计算某点处财务内控制度的导数值使用导数的定义计算,如:计算{f\left( x \right)}在点x = {x_0}处的导数值,则为f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} {{f\left( x \right) - f\left( {{x_0}} \right)} \over {x - {x_0}}},利用导数的定义,将某点处的导数计算转化为极限的计算;
2,任意点处的导数:f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} {{f\left( {x + h} \right) - f\left( x \right)} \over h};
3,利用导数定义计算导数,需注意分子分母变量上的对应;
4,某点处导数存在,则左右导数均存在且相等;
5,某点处的导数值即为函数在该点处的切线斜率值,法线过该点且与切线垂直;
6,可导必连续,连续未必可导,可导函数的导数未必连续;
7,利用某点处导数的定义可以计算一些极限。
四.导数与微分的四则运算1,导数的四则运算
\eqalign{ &a机械毕业论文mp; {\left( {u \pm v} \right)^\prime } = u' \pm v' \cr & {\left( {uv} \right)^\prime } = u'v + uv' \cr & {\left( {Cu} \right)^\prime } = Cu' \cr & {\left( {{u \over v}} \right)^\prime } = {{u'v - uv'} \over {{v^2}}} \cr}
2,微分的四则运算
\eqalign{ & d\left( {u \pm v} \right) = du \pm dv \cr & d\left( {Cu} \right) = Cdu \cr & d\left( {uv} \right) = udv + vdu \cr & d\left( {{u \over v}} \right) = {{vdu - udv} \over {{v^2}}} \cr}
五.反函数的求导设x = g\left( y \right)是函数y = f\left( x \right)的反函数,当{y_0} = f\left( {{x_0}} \right)时,有g'\left( {{y_0}} \right) = {1 \over {f'\left( {{x_0}} \right)}}.
涉及到反函数的问题可以画图象解决,互为反函数的两个函数的图像关于直线y = x对称。
六.复合函数的求导(链式法则)对于复合函数y = f\left[ {g\left( x \right)} \right],其导数为y' = f'\left[ {g\left( x \right)} \right] \cdot g'\left( x \right),也即{{dy} \over {dx}} = {{dy} \over {dg}} \cdot {{dg} \over {dx}}(链式法则),弄清复合关系,一层层求导即可。
七.隐函数的求导方法一:对方程两边直接对变量求导
对于给定的隐函数方程F\left( {x,y}发电机机组 \right) = 0,两边同时对x求导,这里的y是关于x的一个表达式,因此在求导过程中对y的导数需看为复合函数的求导。
方法二:使用隐函数的求导公式
对于给定的隐函数方程F芜湖特产\left( {x,y} \right) = 0,我们有{{dy} \over {dx}} = - {{{F_x}} \over {{F_y}}}。
方法三:微分法
对于给定的隐函数方程F\left( {x,y} \right) = 0,两边同131810取微分d,结合微分的四则运算,解出{{dy} \over {dx}}即可。
八.对数求导法对于幂指函数或有多个式子相乘或相除而形成的函数,首先对函数表达式两端同取对数,再进行求导,会更为简单,即:
y = f\left( x \right),\ln y = \ln f\left( x \right),{{y'} \over y} = {\left[ {\ln f\left( x \right)}社会学习理论 \right]^\prime }
九.由参数方程确定的函数的导数函数y = f\left( x \right)由参数方程\left\{ {\matrix{ {x = x\left( t \right)} \cr {y = y\left( t \right)} \cr } } \right.所确定,则有:
y' = {{dy} \over {dx}} = {{dy} \over {dt}} \cdot {{dt} \over {dx}} = {{dy} \over {dt}} \cdot {1 \over {{{dx} \over {dt}}}} = {{y'\left( t \right)} \over {x'\left( t \right)}}
y'' = {{dy'} \over {dx}} = {{dy'} \over {dt}} \cdot {1 \over {{{dx} \over {dt}}}} = {{y''\left( t \right)x'\left( t \right) - y'\left( t \right)x''\left( t \right)} \over {{{\left深圳生活[ {x'\left( t \right)} \right]}^3}}}
练习(江苏省2000年竞赛题):如果y = y\left( x \right)由方程组\left\{ {\matrix{ {x + t\left( {1 - t} \right)} \cr {t{e^y} + y + 1 = 0} \cr } } \right.确定,求{\left. {{{{d^2一分钟速算}y} \over {d{x^2}}}} \right|_{t = 0}}.
答案:{2 \over {{e^2}}} - {2 \over e}.
十.高阶导数的计算方法一:归纳猜想
先求出一阶、二阶、三阶的导数,寻找规律猜想出n阶导数。
方法二:公式法
结合常见函数的高阶导数公式进行计算。
方法三:莱布尼兹公式(乘积函数)
{\left( {uv} \right)^{\left( n \right)}} = C_n^0{u^{\left( n \right)}}v + C_n^1{u^{\left( {n - 1} \right)}}v' + \cdots C_n^nu{v^{\left( n \right)}}
此公式的形式类似于二项式定理,对于有几个式子相乘而成的函数,选择合适的u,v运用莱布尼兹公式,可简便地计算某点处的导数。
练习1(江苏省1991年竞赛题):设P\left( x \right) = {{{d^n}} \over {d{x^n}}}{\left( {1 - {x^m}} \right)^n},其中m,n为正整数,求P\left( 1 \right).
提示:因式分解、莱布尼兹公式。
答案:{\left( { - m} \right)^n} \cdot n!.
练习2:设y = {1 \over {\sqrt {1 - {x^2}} }}\arcsin x,求{y^{\left( n \right)}}\left( 0 \right).
提示:恒等变形、归纳猜想。
答案:{y^{\left( {2n} \ri大麻和冰毒的区别ght)}}\left( 0 \right) = 0,{y^{\left( {2n + 1} \right)}}\left( 0 \right) = {4^n}{\left( {n!} \right)^2}.
十一.变限积分的求导{d \over {dx}}\left( {\int_{\phi \left( x \right)}^{\varphi \left( x \right)} {f\left( t \right)dt} } \right) = \varphi '\left( x \right)f\left( {\varphi \left( x \right)} \right) - \phi '\left( x \right)f\left( {\phi \left( x \right)} \right)
需注意:在对变限积分求导时,被积式中只能含有关于积分变量的式子,与积分变量无关的要提到积分号外后再求导。
本文发布于:2023-05-27 06:03:55,感谢您对本站的认可!
本文链接:http://www.ranqi119.com/ge/85/133912.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |