1、n边形的内角和公式为(n – 2) ×180°(n大于等于3且n为整数)。任意正多边形的外角和=360°。正多边形任意两条相邻边连线所构成的三角形是等腰三角形。
2、多边形内角和定理证明:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形。因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°。所以n边形的内角和是n·180°-2×180°= (n-2)·180°(n为边数)。即n边形的内角和等于(n-2) ×180°. (n为边数)。
本文发布于:2023-02-12 04:08:06,感谢您对本站的认可!
本文链接:http://www.ranqi119.com/to/16761515589782.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |